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SEDIMENTATION OF A SUSPENSION OF SPHER ICAL PART ICLES IN A CYLINDER* 

O.B. GUS'KOV and A.V. ZOLOTOV 

A method developed in /l-3/**(**See also: Struminskii V.V. et al. Laws of the mechanics 
of disperse media and two-phase systems in connection with the problems of improving the 
efficiency of technological processes. X.1, Preprint No.1, Moscow t Branch of Mechanics of 
Inhomogeneous media, Academy of Sciences of the USSR, 1979.) is used in the creeping-flow 
approximation to study the problem of the sedimentation of a 

long cylindrical tube. The particles are 
statistically uniformly distributed in space. The following formula is obtained for the 
dimensionless velocity of the particles averaged over the ensemble , on the axisofthecylinder, 
in the limiting case when its walls are removed to infinity, to within first-order terms in 
the volume concentration c: 

up = 1 - 4,675 C (0.1) 

(the Stokesvelocity of sedimentation of a single particle inaninfinite fluid is taken as 
the characteristic velocity). It is shown that even when the expression obtained differs 
formally from the well-known result /4/ obtained for the mean sedimentation velocity of a 
limitless suspension 

VP = 1 - 655 e 
(0.2) 

they nevertheless do not contradict each other. 
Batchelor f4/ used the so-called method of renormalization in determining the mean 

velocity (0.2). This enables the well-known problem ofthedivergence of integrals in the 
averaging procedure to be avoided. However, the method still leaves open the question of 
what is the limiting physical situation realized experimentally, which corresponds to the 
concept a limitless 

varies, intheexperimental 
relation of the velocity of sedimentation compatible with (0.2), from -4.65 to -4.80. 

One of the aspects of this disparity between theory /4/ and experiment was revealed in 
17, 8f where an alternative approach was used to compute the mean velocity of the particles 
in the suspension, based on considering the motion of a collection of particles in the presence 
of physical boundaries, followed by averaging over the ensemble and removing the boundaries 
to infinity for constant volume concentration. When such an approach is used, problems of 
diverging integrals in the averaging procedure do not arise. Moreover, it is possible to 
show that the experimentally observed velocities of the particles should depend very much on 
the form of the vessel containing the suspension, even in the limit when its walls are in- 
finitely distant. In particular, it was shown in /8/ that the relation (0.2) must correspond 
to the experimental values of the particle velocities in the case when the suspension settles 
on an infinitely distant plane wall. A different geometry of the experiment should give a 
different dependence of the velocity on the concentration. 

Therefore the following formulas were obtained in /8/ in the problem of the settling of 
a suspension of rigid spherical particles inside a spherical vessel, when its radius tends to 
infinity, for a mean velocity of the particles and fluid up and Us: 

I$ = 1 - 3.55 E, Uf = 2 e (0.3) 
It should be stressed that the result (0.3) is written in the laboratory system of 

coordinates attached to the fixed vessel, i.e. in the system where the experimental measure; 
ments are indirect. On passing to a system of coordinates moving relative to the vessel with 
mean volume velocity 

it is found that the difference vp--u,,= 1--13~55~. The same equation is obtained /7/ in the 
case when the suspension settles on a flat surface. Thus in a system of coordinates where 
the total volume flux of the particles and liquid is zero, the relation (0.2) for the velocity 
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of the particl.es mustholdirrespective of the geometry of the vessel. 
AII analogue of formula (0.3) is obtained below for the case when a suspension is 

settling in a vertical cylindrical tube. 

1. Motion of a finite number of particles in a cylinder. Let US consider, in 
the Stokes approximation, a problem of quasistationary motion under the action of gravity, of 
N identical rigid spheres of radius a , in a viscous incompressible fluid bounded by a rigid 
cylindrical vessel of radius a *. Let the velocities of the particles at some instant be 
u,* (i = 1, 2, . . A) NJ and let their centres be situated at the points l'i* inside the cylinder 
(an asterisk denotes a dimensional variable). We shall consider the case when the particles 
not acted upon by the moments of the forces from the direction of the liquid can rotate freely. 
The problem here is that of determining the velocities of the particles as a function of their 
mutual distribution in space. 

We shall use the method described in 121 to obtain an approximate solution of the problem. 
The method requires a preliminary determination of the hydrodynamic fields appearing, when 
there are no spheres, under the action of N point forces Fi" and dipoles 
applied to the fluid at the points rl*. 

Di* = ',/,a"Fi* 
The velocity and pressure fields must in this case 

satisfy the inhomogeneous system of equations /2/ with boundary conditions (in dimensionless 
form) 

R_N* P*t 
1 ’ p=pu 1 

Here 6 (Ri) is the Dirac delta function, p, 9, 2 are cylindrical coordinates with 
origin on the axis ofthetube, p is the dynamic viscosity, 1 is the characteristic distance 
betweentheparticles and U is the Stokes velocity of settling of a single particle in an 
infinite fluid. 

The general solution of system (1.1) can be written in the form 

where the functions ut and pi represent a special solution of system (1.1). The solution is 
the sum of the known hydrodynamic fields of point forces Fi and dipoles Dt. 

1 

&= K 
(F.R.)R 

I f- Di- 1 
RiJ I c 

S(DiRi)R, 
4n $8 RI1 1 (1.3) 

I (FrRI) 
Pi=xF, Di=='/,a2Fi, 

i 
RI= 1 Ri 1 

Expressions for I@ and p,W for the given boundary conditions (1.1) were obtained 
in /9/. 

Having found ail the functions in (1.2) , we obtain the velocities of the particles 
from the following relations f2/: 

6naU,= F,+ 6na[U,]+na~[AU,] 

U,=&+&~ 
&i +I 

(1.4) 

where the vector Ff coincides with the resultant of the Archimedean and gravity forces acting 
on the particle. The square brackets in (1.4) indicate that the corresponding functions must 
be formally calculated at the centre of the i-th sphere. 

It should be noted that the method described in /2/ gives an approximate solution of the 
problem. The perturbations caused by the particles in the stream are modelled, within the 
framework of this method, using the hydrodynamic fields of the point forces and dipoles only. 
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In order to obtain an exact solution we must take into account all higher-order multipoles. 
If, however, we take into account the results obtained in /4/, we do not need to know, in 
subsequent computations, the specific form of thefunctions describing the hydrodynamic multi- 
pole fields. Henceforth, we shall use the conventional notation for these functions. 

Using the solution of /9/ for uiw and piW, formulas (1.3) and the obvious relation 
1 F1 [ = Fi, = 6na, we can obtain expressions for the velocities of the particles Ui and fluid 
v (r) in a specific form. In the special case when ri= 0 and r = 0 respectively, the 
vertical components of the velocities will have the form 

(1.5) 

:j(2) = h2S,K1, yi(z) = -_h=SoKO, fi, = hpj/R 

sn = In (Bj)t Kn = Kn (A) 

where I,(X) and K,(r) are the modified n-th order Bessel function of the first and second 
kind, Ai and Aiw are the contributions of the natural fields of the multipoles and the 
corresponding responses from the walls to the particle velocities, and A+ and Atw are the 
corresponding contributions to the velocity of the fluid. 

2. Computing the mean sedimentation velocity. Let US consider the problem of the 
sedimentation of a group of rigid spheres in a fluid, along the vertical axis of the tube. 
We shall assume that the particles are statistically uniformly distributed throughout the 
fluid within a cylindrical layer of height H, i.e. within a volume whose boundaries are 
described by the equations p= R,z = &H/2. Using the linear approximation we shall find the 
mean velocity of the particles and the fluid in terms of the volume concentration, in the 
limit when first the height of the layer and then the volume of 
infinity, with the value of c kept constant. Following /7, 8/, 
velocities using the process of averaging over various particle 
the mean values of the velocities at the centre of the layer 

uP = lim (Vi, 1 ri = 0) 

vi = liln <u, (r = 0) ) r-j> a> 

the cylinder both tend to 
we shall determine the above 
configurations and calculating 

(2.1) 

G.2) 

Here the lim sign denotes the passage to the limit described above, <...I ri =0) denotes 
averaging wer the possible configurations for which ri = 0. Similarly, (... Ir,> a) denotes 
averaging over the configurationsforwhich not even a single particle overlaps the origin of 
coordinates. If we limit ourselves, in advance, to the linear approximation with respect to 
the volume concentrations and assume that the suspension is homogeneous, then the part of the 
weight function in the averaging process (2.1), (2.2) will be played by the numerical con- 
centration equal to unity within the suitably chosen scales. 

Substituting (1.5) into (2.1), we obtain 

cc 

~~=l_tlirn[~~{drp~ Spjdpj S dz@(R-a-pj)x 
-m 

0 (Ha/4 - zFy8(rj 1 2a){a(ujF + uy") + 

aS(2ujD+ 2~7" + u?~))+ <Ai (r,=O)+ (A? (ri- O)] 

(2.3) 
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where e(x) is a step function equal to unity when z.>:~ 0, and to zero when 5 < 0. When 
computing the mean values of the quantities <Ai/ ri = 0) and <h~WiPi = 0) in the linear approxi- 
mation with respect to the concentration, we have ta take into account in ths functions Ai and 
A,rr' only the terms describing the pairwise intexaction between the particles, Terms describing 
higher-order interactions will only contribute towards the coefficients of the higher-order 
concentration terms. 

The quantity fiZk<Al Ire =O> was calculated in the approximation of the pairwise inter- 
action of the particles in 14[* and is equal to 1.55 c. We will find that within the same 
approximation the functions occurring in Ai" are of the order of fpi/i?f"/Rm where n + m.> 
4. Therefore, after averaging Ai'Y we obtain the value of zero in the limit as R-c =. 
Evaluating the remaining integrals and limits in (2.13) directly (when the effect of the walls 
is taken into account, the problem of divergence in the process of averaging (2.3) does not 
arise), and taking into account the obvious equality &as = 3e, we can obtain the final ex- 
pression for the mean velacity of the particles (0.1:. 

We find the mean velacity of the fluid at the centre of the layer fat r = 0) in the 
same manner- Substituting Cl.51 into (2.2) we obtaSn 

The estimates obtained for L&W also apply to Afw e Therefore Urn <Afw (r I=I 0) [r,>a> = 
0. The function A$ also makes a zero contribution to the velocity of the liquid in the 
linear approximation with respect to concentration, This assertion follows directly from the 
fact that when a single particle moves in an infinite fluid, the function describing the 
velocity field does not contain terms of the order of rr" when n> 4 (the two-particle 
interactions make a contribution to the velocity of the liquid only in the coefficients fn 
front of ch‘when k> 2). Carrying out direct calculations in (2.41 we obtain 

rt=;/, c Q.5) 

Thus formulas (0.1) and (2.51 hold for the velocities of the particles and liquid on 
the cylinder axisI in the limiting case when the walls of the cyfinder are removed to infinity. 

Formally, result (i&i) agrees with experimental data /5, 6J. This, however, does not 
fully clarify the problem of intexpreting such experiments. Usually, in experiments dealing 
with the settling of suspensions in cylindrical tubes one follows the motion of the boundary 
sepaxating the suspension from the clear liquid , and the stability of this tiundary represents 
the characteristic featuxe of this phenomenon. Therefore, the next stage in explaining similar 
experiments might consist of a theoretical study of the problems of the evolution and stabil- 
ization of the boundary of separation. 

Expressions tO.1) and (2.5) for the velocities of the particles and the f1ui.d are obtained 
in a system of coordinates attached to the fixed walls of the cylinder. Let us change to a 
system of coordinates moving relative to the cylinder at a mean volume rate of v, =cv,+ (1 - 
c) i+ = '@ia E. 

The expression for the velocity of the particles in this system, as might be expected, is 
identical with result (0.2). 
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